Differential Subordinations and Harmonic Means
نویسندگان
چکیده
منابع مشابه
Differential Subordinations of Arithmetic and Geometric Means of Some Functionals Related to a Sector
For r > 0 let r {z ∈ : |z| < r}. Let 1 . Let the functions f and F be analytic in the unit disc . A function f is called subordinate to F, written f ≺ F, if F is univalent in , f 0 F 0 and f ⊂ F . Let D be a domain in 2 and ψ : 2 ⊃ D → be an analytic function, and let p be a function analytic in with p z , zp′ z ∈ D, z ∈ and h be a function analytic and univalent in . The function p is said to ...
متن کاملDifferential Subordinations for Fractional- Linear Transformations
We establish that the differential subordinations of the forms p(z)+γzp′(z)≺ h(A1,B1;z) or p(z)+γzp′(z)/p(z) ≺ h(A2,B2;z) implies p(z) ≺ h(A,B;z), where γ ≥ 0 and h(A,B;z)= (1+Az)/(1+Bz) with −1≤ B <A.
متن کاملCertain Second Order Linear Differential Subordinations
In this present investigation, we obtain some results for certain second order linear differential subordination. We also discuss some applications of our results.
متن کاملOptimal convex combinations bounds of centrodial and harmonic means for logarithmic and identric means
We find the greatest values $alpha_{1} $ and $alpha_{2} $, and the least values $beta_{1} $ and $beta_{2} $ such that the inequalities $alpha_{1} C(a,b)+(1-alpha_{1} )H(a,b)
متن کاملOptimal inequalities for the power, harmonic and logarithmic means
For all $a,b>0$, the following two optimal inequalities are presented: $H^{alpha}(a,b)L^{1-alpha}(a,b)geq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain[frac{1}{4},1)$, and $ H^{alpha}(a,b)L^{1-alpha}(a,b)leq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain(0,frac{3sqrt{5}-5}{40}]$. Here, $H(a,b)$, $L(a,b)$, and $M_p(a,b)$ denote the harmonic, logarithmic, and power means of order $p$ of two positive numbers...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Malaysian Mathematical Sciences Society
سال: 2015
ISSN: 0126-6705,2180-4206
DOI: 10.1007/s40840-014-0078-9